Structural implications of conserved aspartate residues located in tropomyosin’s coiled-coil core
نویسندگان
چکیده
Polar residues lying between adjacent α-helical chains of coiled-coils often contribute to coiled-coil curvature and flexibility, while more typical core hydrophobic residues anneal the chains together. In tropomyosins, ranging from smooth and skeletal muscle to cytoplasmic isoforms, a highly conserved Asp at residue 137 places negative charges within the tropomyosin coiled-coil core in a position which may affect the conformation needed for tropomyosin binding and regulatory movements on actin. Proteolytic susceptibility suggested that substituting a canonical Leu for the naturally occurring Asp at residue 137 increases inter-chain rigidity by stabilizing the tropomyosin coiled-coil. Using molecular dynamics, we now directly assess changes in coiled-coil curvature and flexibility caused by such mutants. Although the coiled-coil flexibility is modestly diminished near the residue 137 mutation site, as expected, a delocalized increase in flexibility along the overall coiled-coil is observed. Even though the average shape of the D137L tropomyosin is straighter than that of wild-type tropomyosin, it is still capable of binding actin due to this increase in flexibility. We conclude that the conserved, non-canonical Asp-137 destabilizes the local structure resulting in a local flexible region in the middle of tropomyosin that normally is important for tropomyosin steady-state equilibrium position on actin.
منابع مشابه
Demonstration of coiled-coil interactions within the kinesin neck region using synthetic peptides. Implications for motor activity.
Kinesin is a dimeric motor protein that can move for several micrometers along a microtubule without dissociating. The two kinesin motor domains are thought to move processively by operating in a hand-over-hand manner, although the mechanism of such cooperativity is unknown. Recently, a approximately 50-amino acid region adjacent to the globular motor domain (termed the neck) has been shown to ...
متن کاملKinking the coiled coil--negatively charged residues at the coiled-coil interface.
The coiled coil is one of the most common protein-structure motifs. It is believed to be adopted by 3-5% of all amino acids in proteins. It comprises two or more alpha-helical chains wrapped around one another. The sequences of most coiled coils are characterized by a seven-residue (heptad) repeat, denoted (abcdefg)(n). Residues at the a and d positions define the helical interface (core) and a...
متن کاملThe coiled-coil helix in the neck of kinesin.
Kinesin is a microtubule-dependent motor protein. We have recently determined the X-ray structure of monomeric and dimeric kinesin from rat brain. The dimer consists of two motor domains, held together by their alpha-helical neck domains forming a coiled coil. Here we analyze the nature of the interactions in the neck domain (residues 339-370). Overall, the neck helix shows a heptad repeat (abc...
متن کاملAlphavirus nucleocapsid protein contains a putative coiled coil alpha-helix important for core assembly.
The alphavirus nucleocapsid core is formed through the energetic contributions of multiple noncovalent interactions mediated by the capsid protein. This protein consists of a poorly conserved N-terminal region of unknown function and a C-terminal conserved autoprotease domain with a major role in virion formation. In this study, an 18-amino-acid conserved region, predicted to fold into an alpha...
متن کاملSpring-loaded heptad repeat residues regulate the expression and activation of paramyxovirus fusion protein.
During viral entry, the paramyxovirus fusion (F) protein fuses the viral envelope to a cellular membrane. Similar to other class I viral fusion glycoproteins, the F protein has two heptad repeat regions (HRA and HRB) that are important in membrane fusion and can be targeted by antiviral inhibitors. Upon activation of the F protein, HRA refolds from a spring-loaded, crumpled structure into a coi...
متن کامل